
Approved: 2020-06-10

Measurement System Identification:

Not Measurement Sensitive

 NASA TECHNICAL STANDARD

NASA-STD-8739.8A

National Aeronautics and Space Administration

 Approved: 2020-06-10

Superseding NASA-STD-8739.8

With Change 1

SOFTWARE ASSURANCE AND SOFTWARE SAFETY STANDARD

APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED

NASA-STD-8739.8A – 2020-06-10

2 of 59

DOCUMENT HISTORY LOG

Status
Document

Revision
Approval Date Description

Baseline Initial 2004-07-28
Initial Release

 1 2005-05-05
Administrative changes to the Preface;

Paragraphs 1.1, 1.4, 1.5, 2.1.1, 2.2.2, 3, 5.1.2.3,

5.4.1.1; 5.6.2, 5.8.1.2, 6.7.1.a, 7.3.2, 7.3.3, 7.5,

7.5.1; Table 1; Appendix A; Appendix C to

reflect NASA Transformation changes, reflect the

release of NASA Procedural Requirements

(NPR) 7150.2, NASA Software Engineering

Requirements and to make minor editorial

changes. Note: Some paragraphs have changed

pages as a result of these changes. Only pages

where content has changed are identified by

change indications.

 A 2020-06-10 The revised document addresses the following

significant issues: combined the NASA Software

Assurance Standard (NASA-STD-8739.8) with

the NASA Software Safety Standard (NASA-

STD-8719.13), reduction of requirements, bring

into alignment with updates to NPR 7150.2,

added a section on IV&V requirements to

perform IV&V, and moved guidance text to an

Electronic Handbook. This change combines the

updates to NASA-STD-8739.8 and the content of

NASA-STD-8719.13. The update includes the

NASA software safety requirements and cancels

NASA-STD-8719.13 standard.

NASA-STD-8739.8A – 2020-06-10

3 of 59

FOREWORD

This NASA Technical Standard is published by the National Aeronautics and Space

Administration (NASA) to provide uniform engineering and technical requirements for

processes, procedures, practices, and methods that have been endorsed as standard for NASA

facilities, programs, and projects, including requirements for selection, application, and design

criteria of an item.

This standard was developed by the NASA Office of Safety and Mission Assurance (OSMA).

Requests for information, corrections, or additions to this standard should be submitted to the OSMA

by email to Agency-SMA-Policy-Feedback@mail.nasa.gov or via the “Email Feedback” link at

https://standards.nasa.gov.

F. Groen for T. Wilcutt June 10, 2020

Terrence W. Wilcutt Approval Date

NASA Chief, Safety and Mission Assurance

mailto:Agency-SMA-Policy-Feedback@mail.nasa.gov
https://standards.nasa.gov/

NASA-STD-8739.8A – 2020-06-10

4 of 59

TABLE OF CONTENTS

DOCUMENT HISTORY LOG ... 2
FOREWORD... 3
TABLE OF CONTENTS ... 4
LIST OF APPENDICES .. 4

LIST OF TABLES .. 4

1. SCOPE .. 5
1.1 Document Purpose ... 5
1.2 Applicability .. 6
1.3 Documentation and Deliverables ... 6
1.4 Request for Relief .. 6

2. APPLICABLE AND REFERENCE DOCUMENTS ... 6
2.1 Applicable Documents ... 6
2.2 Reference Documents .. 7
2.3 Order of Precedence ... 8

3. ACRONYMS AND DEFINITIONS ... 9
3.1 Acronyms and Abbreviations .. 9

3.2 Definitions.. 9

4. SOFTWARE ASSURANCE AND SOFTWARE SAFETY REQUIREMENTS ... 15
4.1 Software Assurance Description .. 15

4.2 Safety-Critical Software Determination .. 15

4.3 Software Assurance and Software Safety Requirements ... 16
4.4 Independent Verification &Validation (IV&V) ... 46
4.5 Principles Related to Tailoring the Standard Requirements .. 53

LIST OF APPENDICES

 Appendix A Guidelines for the Hazard Development involving Software 55

LIST OF TABLES

Table 1. Software Assurance and Software Safety Requirements Mapping Matrix 17
Table 2. Additional considerations when identifying software causes in hazard analysis 57

NASA-STD-8739.8A – 2020-06-10

5 of 59

SOFTWARE ASSURANCE AND SOFTWARE SAFETY

STANDARD

1. SCOPE

1.1 Document Purpose

 The purpose of the Software Assurance and Software Safety Standard is to define the

requirements to implement a systematic approach to Software Assurance (SA), software safety,

and Independent Verification and Validation (IV&V) for software created, acquired, provided, or

maintained by or for NASA. Various personnel in the program, project, or facility, and Safety

and Mission Assurance (SMA) organizations can perform the activities required to satisfy these

requirements. The Software Assurance and Software Safety Standard provides a basis for

personnel to perform software assurance, software safety, and IV&V activities consistently

throughout the life of the software, that is, from its conception, through creation to operations

and maintenance, and until the software is retired.

 The Software Assurance and Software Safety Standard, in accordance with NPR

7150.2, NASA Software Engineering Requirements, supports the implementation of the software

assurance, software safety, and IV&V sub-disciplines. The application and approach to meeting

the Software Assurance and Software Safety Standard will vary based on the system and

software products and processes to which they are applied. The Software Assurance and

Software Safety Standard stresses coordination between the software assurance sub-disciplines,

as well as with system safety, system reliability, hardware quality, system security, and software

engineering, to maintain the system perspective and minimize duplication of effort.

 The objectives of the Software Assurance and Software Safety Standard include:

a. Ensuring that the processes, procedures, and products used to produce and sustain the

software conform to all requirements and standards specified to govern those processes,

procedures, and products.

b. Ensuring that the software systems are safe and that the software safety-critical requirements

and processes are followed.

c. Ensuring that the software systems are secure.

 The Software Assurance and Software Safety Standard is compatible with all software

life-cycle models. The Software Assurance and Software Safety Standard does not impose a

particular life-cycle model on each software project; it does support a standard set of life-cycle

phases as defined in NPR 7150.2.

 In this standard, all mandatory actions (i.e., requirements) are denoted by statements

containing the term “shall.” The terms “may” denotes a discretionary privilege or permission,

“can” denotes statements of possibility or capability, “should” denotes a good practice and is

recommended, but not required, “will” denotes expected outcome, and “are/is” denotes

descriptive material.

NASA-STD-8739.8A – 2020-06-10

6 of 59

1.2 Applicability

 This standard is approved for use by NASA Headquarters and NASA Centers,

including Component Facilities and Technical and Service Support Centers. This NASA

Technical Standard applies to the assurance of software created by or for NASA projects,

programs, facilities, and activities and defines the requirements for those activities. This standard

may also apply to the Jet Propulsion Laboratory or other contractors, grant recipients, or parties

to agreements to the extent specified or referenced in their contracts, grants, or agreements.

1.3 Documentation and Deliverables

 The Software Assurance and Software Safety Standard is not intended to designate the

format of program/project/facility documentation and deliverables. The software assurance and

software safety information and plans are quality records. The format of the documentation is a

program/project/facility decision. The software assurance and software safety organizations will

keep records, reports, and metrics, as well as analyses and trending results and should, keep

copies of their project plans for future reference and improvements. The software assurance and

software safety plans (e.g., the SA plan) can be standalone documents or incorporated within

other documents (e.g., part of a software management/development plan, or part of a system

Safety and Mission Assurance (SMA) plan).

 The software assurance and software safety organization and the project manager are

responsible for developing the software assurance and software safety plan(s). The software

assurance organization contributes to the development of the Software Management Plan(s) and

Software Development Plan(s). The SMA organization has signature authority on software plans

and documentation.

1.4 Request for Relief

 Tailoring of this standard for application to a specific program or project will be

documented as part of program or project requirements and approved by the responsible Center

Technical Authority (TA) in accordance with NPR 8715.3, NASA General Safety Program

Requirements. Section 4.5 of the standard contains the principles related to tailoring the standard

requirements.

2. APPLICABLE AND REFERENCE DOCUMENTS

2.1 Applicable Documents

The applicable documents are accessible via the NASA Technical Standards System at

https://standards.nasa.gov or may be obtained directly from the Standards Developing

Organizations or other document distributors.https://standards.nasa.gov or may be obtained

directly from the Standards Developing Organizations or other document distributors.

 Government Documents

NPR 1400.1 NASA Directives and Charters Procedural Requirements

https://standards.nasa.gov/

NASA-STD-8739.8A – 2020-06-10

7 of 59

NPR 7120.5 NASA Space Flight Program and Project Management

Requirements

NPR 7120.10 Technical Standards for NASA Programs and Projects

NPR 7150.2 NASA Software Engineering Requirements

NPR 8000.4 Agency Risk Management Procedural Requirements

NPR 8715.3 NASA General Safety Program Requirements

NASA-HDBK-2203 NASA Software Engineering Handbook

2.2 Reference Documents

The reference documents listed in this section are not incorporated by reference within this

standard but may provide further clarification and guidance.

 Government Documents

NPD 2810.1 NASA Information Security Policy

NPD 8720.1 NASA Reliability and Maintainability Program Policy

NPR 1441.1 NASA Records Management Program Requirements

NPR 2810.1 Security of Information Technology

NPR 7123.1 NASA Systems Engineering Processes and Requirements

NASA-STD-7009 Standard for Models and Simulations

NASA-HDBK-8709.22 Safety and Mission Assurance Acronyms, Abbreviations,

and Definitions

NASA-HDBK-8739.23 NASA Complex Electronics Handbook for Assurance

Professionals

NASA-GB-8719.13 NASA Software Safety Guidebook

NIST SP 800-40 Creating a Patch and Vulnerability Management Program

NIST SP 800-53 Security Controls and Assessment Procedures for Federal

Information Systems and Organizations

NIST SP 800-70 National Checklist Program for Information Technology

products: Guidelines for Checklist Users and Developers

NASA-STD-8739.8A – 2020-06-10

8 of 59

NIST SP 800-115 Technical Guide to Information Security Testing and

Assessment

 Non-Government Documents

CMMI-DEV, V1.3 Capability Maturity Model Integration (CMMI®) for

Development, Version 1.3

CMMI-DEV, V2.0 CMMI® Development, Version 2.0

IEEE 730-2014 Institute of Electrical and Electronics Engineers (IEEE)

Standard for Software Assurance Processes

IEEE 982.1-2005 IEEE Standard Measures of the Software Aspects of

Dependability, 8 November 2005

IEEE 1012-2017 IEEE Standard for System, Software, and Hardware

Verification and Validation, 28 September 2017

IEEE 1028-2008 IEEE Standard for Software Reviews and Audits, 15

August 2008

IEEE 1633-2016 IEEE Recommended Practice on Software Reliability, 22

September 2016

ISO 24765-2017 System and Software Engineering – Vocabulary, Second

Edition,

2.3 Order of Precedence

 This standard establishes requirements to implement a systematic approach to SA,

Software Safety, and IV&V for software created, acquired, provided, or maintained by or for

NASA but does not supersede nor waive established Agency requirements found in other

documentation.

 Conflicts between the Software Assurance and Software Safety Standard and other

requirements documents will be resolved by the responsible SMA and engineering TA(ies), per

NPR 1400.1, NASA Directives and Charters Procedural Requirements, and NPR 7120.10,

Technical Standards for NASA Programs and Projects.

NASA-STD-8739.8A – 2020-06-10

9 of 59

3. ACRONYMS AND DEFINITIONS

3.1 Acronyms and Abbreviations

CMMI®️ Capability Maturity Model Integration

COTS Commercial Off-The-Shelf

GOTS Government Off-The-Shelf

IEEE Institute of Electrical and Electronics Engineers

IPEP IV&V Program Execution Plan

IV&V Independent Verification and Validation

MOTS Modified Off-The-Shelf

NASA National Aeronautics and Space Administration

NIST National Institute of Standards and Technology

NPD NASA Policy Directive

NPR NASA Procedural Requirements

OSMA HQ Office, Safety and Mission Assurance

OSS Open Source Software

SASS Software Assurance and Software Safety

SWE Software Engineering

TA Technical Authority

3.2 Definitions

Accredit: The official acceptance of a software development tool, model, or simulation

(including associated data) to use for a specific purpose.

Acquirer: The entity or individual who specifies the requirements and accepts the resulting

software products. The acquirer is usually NASA or an organization within the Agency but can

also refer to the prime contractor-subcontractor relationship as well.

Analyze: Review results in-depth, look at relationships of activities, examine methodologies in

detail, follow methodologies such as Failure Mode and Effects Analysis, Fault Tree Analysis,

trending, and analysis of metrics. Examine processes, plans, products, and task lists for

completeness, consistency, accuracy, reasonableness, and compliance with requirements. The

NASA-STD-8739.8A – 2020-06-10

10 of 59

analysis may include identifying missing, incomplete, or inaccurate products, relationships,

deliverables, activities, required actions, etc.

Approve: When the responsible originating official, or designated decision authority, of a

document, report, condition, etc. has agreed, via their signature, to the content and indicates the

document is ready for release, baselining, distribution, etc. Usually, there will be one “approver”

and several stakeholders who would need to “concur” for official acceptance of a document,

report, etc. (for example, the project manager would approve the Software Development Plan,

but SMA would concur on it.)

Assess: Judge results against plans or work product requirements. Assess includes judging for

practicality, timeliness, correctness, completeness, compliance, evaluation of rationale, etc.,

reviewing activities performed, and independently tracking corrective actions to closure.

Assure: When software assurance personnel make certain that others have performed the

specified software assurance, management, and engineering activities.

Audit: (1) systematic, independent and documented process for obtaining audit evidence and

evaluating it objectively to determine the extent to which audit criteria are fulfilled (2)

independent examination of a work product or set of work products to assess compliance with

specifications, standards, contractual agreements, or other criteria (3) independent examination

of a software product, software process, or set of software processes to assess compliance with

specifications, standards, contractual agreements, or other criteria (4) systematic, independent,

documented process for obtaining records, statements of fact, or other relevant information and

assessing them objectively, to determine the extent to which specified requirements are fulfilled.

Note: An audit can be an internal audit (first-party) or an external audit (second party or a third

party), and it can be a combined or integrated audit (combining two or more disciplines). Audit

results are a clear indication of whether the audit criteria have been met. (IEEE Definition)

Concur: A documented agreement that a proposed course of action is acceptable.

Condition: (1) measurable qualitative or quantitative attribute that is stipulated for a requirement

and that indicates a circumstance or event under which a requirement applies (2) description of a

contingency to be considered in the representation of a problem, or a reference to other

procedures to be considered as part of the condition (3) true or false logical predicate (4) logical

predicate involving one or more behavior model elements (5) Boolean expression containing no

Boolean operators.

Configuration Item: An aggregation of hardware, software, or both, that is established and

baselined, with any modifications tracked and managed. Examples include requirements

document, data block, Use Case, or unit of code.

Confirm: Checks to see that activities specified in the software engineering requirements are

adequately done, and evidence of the activities exists as proof. Confirm includes making sure

activities are done completely and correctly and have expected content in accordance with

approved tailoring.

NASA-STD-8739.8A – 2020-06-10

11 of 59

Deliverable: Report or item that has to be completed and delivered under the terms of an

agreement or contract. Products may also be deliverables, e.g., software requirements

specifications, detailed design documents.

Develop: To produce or create a product or document and to mature or advanced the product or

document content.

Ensure: When software assurance or software safety personnel perform the specified software

assurance and software safety activities themselves.

Event: (1) occurrence of a particular set of circumstances (2) external or internal stimulus used

for synchronization purposes (3) change detectable by the subject software (4) fact that an action

has taken place (5) singular moment in time at which some perceptible phenomenological

change (energy, matter, or information) occurs at the port of a unit.

Hazard: A state or a set of conditions, internal or external to a system that has the potential to

cause harm.

Hazard Analysis: Identification and evaluation of existing and potential hazards and the

recommended mitigation for the hazard sources found.

Hazard Control: Means of reducing the risk of exposure to a hazard.

Hazardous Operation/Work Activity: Hazardous Operation/Work Activity. Any operation or

other work activity that, without the implementation of proper mitigations, has a high potential to

result in loss of life, serious injury to personnel or public, or damage to property due to the

material or equipment involved or the nature of the operation/activity itself.

Independent Verification and Validation (IV&V): Verification and validation performed by an

organization that is technically, managerially, and financially independent of the development

organization. (Source: ISO/IEC/IEEE 24765)

Inhibit: Design feature that prevents the operation of a function.

Maintain: To continue to have; to keep in existence, to stay up-to-date and correct.

Mission Critical: Item or function that must retain its operational capability to assure no mission

failure (i.e., for mission success). (Source: NPR 8715.3)

Monitor: (1) software tool or hardware device that operates concurrently with a system or

component and supervises, records, analyzes, or verifies the operation of the system or

component; (2) collect project performance data with respect to a plan, produce performance

measures, and report and disseminate performance information.

Participate: To be a part of the activity, audit, review, meeting, or assessment.

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

NASA-STD-8739.8A – 2020-06-10

12 of 59

Perform: Software assurance does the action specified. Perform may include making

comparisons of independent results with similar activities performed by engineering, performing

audits, and reporting results to engineering.

Product: A result of a physical, analytical, or another process. The item delivered to the customer

(e.g., hardware, software, test reports, data), as well as the processes (e.g., system engineering,

design, test, logistics) that make the product possible. (Source: NASA-HDBK-8709.22)

Program: A strategic investment by a Mission Directorate or Mission Support Office that has a

defined architecture and/or technical approach, requirements, funding level, and management

structure that initiates and directs one or more projects. A program implements a strategic

direction that the Agency has identified as needed to accomplish Agency goals and objectives.

(Source: NPR 7120.5)

Project: A specific investment having defined goals, objectives, requirements, life-cycle cost, a

beginning, and an end. A project yields new or revised products or services that directly address

NASA’s strategic needs. (Source: NPR 7150.2)

Project Manager: The entity or individual who accepts the resulting software products. Project

managers are responsible and accountable for the safe conduct and successful outcome of their

program or project in conformance with governing Programmatic requirements. This is usually

NASA, but can also refer to the Prime contractor-subcontractor relationship as well.

Provider: A person or entity that provides something.

Risk Posture: A characterization of risk based on conditions (e.g., criticality, complexity,

environments, performance, cost, schedule) and a set of identified risks, taken as a whole which

allows an understanding of the overall risk, or provides a target risk range or level, which can

then be used to support decisions being made.

Safe State: A system state in which hazards are inhibited, and all hazardous actuators are in a

non-hazardous state. The system can have more than one Safe State.

Safety-Critical: A term describing any condition, event, operation, process, equipment, or system

that could cause or lead to severe injury, major damage, or mission failure if performed or built

improperly, or allowed to remain uncorrected. (Source NPR 8715.3)

Safety-Critical Software: Software is classified as safety-critical if it meets at least one of the

following criteria:

a. Causes or contributes to a system hazardous condition/event,

b. Provides control or mitigation for a system hazardous condition/event,

c. Controls safety-critical functions,

d. Mitigates damage if a hazardous condition/event occurs,

NASA-STD-8739.8A – 2020-06-10

13 of 59

e. Detects, reports, and takes corrective action if the system reaches a potentially hazardous state.

Software: (1) computer programs, procedures, and possibly associated documentation and data

pertaining to the operation of a computer system (2) all or a part of the programs, procedures,

rules, and associated documentation of an information processing system (3) program or set of

programs used to run a computer (4) all or part of the programs which process or support the

processing of digital information (5) part of a product that is the computer program or the set of

computer programs. The software definition applies to software developed by NASA, software

developed for NASA, software maintained by or for NASA, COTS, GOTS, MOTS, OSS, reused

software components, auto-generated code, embedded software, the software executed on

processors embedded in programmable logic devices, legacy, heritage, applications, freeware,

shareware, trial or demonstration software, and open-source software components. (Source: NPR

7150.2)

Software Assurance: The level of confidence that software is free from vulnerabilities, either

intentionally designed into the software or accidentally inserted at any time during its life-cycle,

and that the software functions in an intended manner.

Software Developer: A person or thing that develops software, based on program/project

requirements.

Software Life-Cycle: The period that begins when a software product is conceived and ends

when the software is no longer available for use. The software life-cycle typically includes a

concept phase, requirements phase, design phase, implementation phase, test phase, installation

and checkout phase, operation and maintenance phase, and sometimes, retirement phase.

Software Peer Review: An examination of a software product to detect and identify software

anomalies, including errors and deviations from standards and specifications. (Source: IEEE

1028)

Software Safety: The aspects of software engineering, system safety, software assurance and

software safety that provide a systematic approach to identifying, analyzing, tracking, mitigating,

and controlling hazards and hazardous functions of a system where software may contribute

either to the hazard(s) or to its detection, mitigation or control, to ensure safe operation of the

system.

Software Validation: Confirmation that the product, as provided (or as it will be provided),

fulfills its intended use. In other words, validation ensures that “you built the right thing.”

(Source: IEEE 1012)

Software Verification: Confirmation that products properly reflect the requirements specified for

them. In other words, verification ensures that “you built it right.” (Source: IEEE 1012)

Supplier: a person or organization that provides something needed, such as a software product or

service.

NASA-STD-8739.8A – 2020-06-10

14 of 59

System Safety: Application of engineering and management principles, criteria, and techniques

to optimize safety and reduce risks within the constraints of operational effectiveness, time, and

cost.

Tailoring: The process used to refine or modify a requirement for a particular project with a

justified purpose.

Track: To follow and note the course or progress of the product.

NASA-STD-8739.8A – 2020-06-10

15 of 59

4. SOFTWARE ASSURANCE AND SOFTWARE SAFETY

REQUIREMENTS

4.1 Software Assurance Description

 Software assurance is the level of confidence that software is free from vulnerabilities,

either intentionally designed into the software or accidentally inserted at any time during its life-

cycle, and that the software functions in an intended manner and that the software does not

function in an unintended manner. The objectives of the Software Assurance and Software

Safety Standard include:

a. Ensuring that the processes, procedures, and products used to produce and sustain the

software conform to all requirements and standards specified to govern those processes,

procedures, and products.

b. Ensuring that the software systems are safe and that the software safety-critical requirements

and processes are followed.

c. Ensuring that the software systems are secure.

 Project and SMA Management support of the software assurance function is essential

for software assurance processes to be effective. The software assurance support minimally

includes:

a. Management is familiar with and understands the software assurance function’s purposes,

concepts, practices, and needs.

b. Management provides the software assurance activities with a level of skilled resources

(people, equipment, knowledge, methods, facilities, and tools) to accomplish their project

responsibilities.

c. Management receives and acts upon information provided by the software assurance function

throughout a project.

 The Software Assurance and Software Safety Standard’s requirements apply to

organizations in their roles as both acquirers and providers. A single organization can use the

standard in a self-imposed mode or in a multi-party situation. The same organization or different

organizations can implement the Software Assurance and Software Safety Standard’s

requirements, and the job can originate from a Memorandum of Agreement, Memorandum of

Understanding, or a contract.

4.2 Safety-Critical Software Determination

 Software is classified as safety-critical, if it meets at least one of the following criteria:

a. Causes or contributes to a system hazardous condition/event,

b. Provides control or mitigation for a system hazardous condition/event,

NASA-STD-8739.8A – 2020-06-10

16 of 59

c. Controls safety-critical functions,

d. Mitigates damage if a hazardous condition/event occurs,

e. Detects, reports, and takes corrective action, if the system reaches a potentially hazardous

state.

Note: Software is classified as safety-critical if the software is determined by and traceable

to hazard analysis. See appendix A for guidelines associated with addressing software in

hazard definitions. See SWE-205. Consideration for other independent means of protection

(software, hardware, barriers, or administrative) should be a part of the system hazard

definition process.

4.3 Software Assurance and Software Safety Requirements

 The responsible project manager shall perform the software assurance and software

safety activities defined in Table 1 per the requirements marked applicable in the software

engineering requirements mapping matrix for the software component. (SASS-01) In this

document, the phrase “Software Assurance and Software Safety Tasks” means that the roles and

responsibilities for completing these requirements may be delegated within the project consistent

with the scope and scale of the project. The Center SMA Director designates SMA TA(ies) for

programs, facilities, and projects, providing direction, functional oversight, and assessment for

all Agency software assurance and software safety activities.

NASA-STD-8739.8A – 2020-06-10

17 of 59

Table 1. Software Assurance and Software Safety Requirements Mapping Matrix

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3 Software Management Requirements

3.1 Software Life-Cycle Planning

3.1.2 033 The project manager shall assess options for

software acquisition versus development.

1. Confirm that the options for software acquisition

versus development have been evaluated.

2. Confirm the flow down of applicable software

engineering, software assurance, and software safety

requirements on all acquisition activities. (NPR

7150.2 and NASA-STD-8739.8).

3. Assess any risks with acquisition versus

development decision(s).

3.1.3 013 The project manager shall develop, maintain, and

execute software plans that cover the entire

software life-cycle and, as a minimum, address

the requirements of this directive with approved

tailoring.

1. Confirm that all plans are in place, and have

expected content for the life-cycle events, with

proper tailoring for the classification of the software.

2. Develop a Software Assurance Plan following the

content defined in NASA-HDBK-2203 for a software

assurance plan, including software safety.

3.1.4 024 The project manager shall track the actual results

and performance of software activities against the

software plans.

a. Corrective actions are taken, recorded, and

managed to closure.

b. Including changes to commitments (e.g.,

software plans) that have been agreed to by the

affected groups and individuals.

1. Assess plans for compliance with NPR 7150.2

requirements, NASA-STD-8739.8, including changes

to commitments.

2. Confirm that closure of corrective actions

associated with the performance of software activities

against the software plans, including closure

rationale.

3.1.5 034 The project manager shall define and document

the acceptance criteria for the software.

1. Confirm software acceptance criteria are defined

and assess the criteria based on guidance in the

NASA Software Engineering Handbook, NASA-

HDBK-2203.

NASA-STD-8739.8A – 2020-06-10

18 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.1.6 036 The project manager shall establish and maintain

the software processes, software documentation

plans, list of developed electronic products,

deliverables, and list of tasks for the software

development that are required for the project’s

software developers, as well as the action

required (e.g., approval, review) of the

Government upon receipt of each of the

deliverables.

1. Confirm the following are approved, implemented,

and updated per requirements:

a. Software processes, including software assurance,

software safety, and IV&V processes.

b. Software documentation plans,

c. List of developed electronic products, deliverables,

and

d. List of tasks required or needed for the project’s

software development.

2. Confirm that any required government actions

upon receipt of deliverables (e.g., approvals, reviews)

are established and maintained.

3.1.7 037 The project manager shall define and document

the milestones at which the software developer(s)

progress will be reviewed and audited.

1. Confirm that milestones for reviewing and auditing

software developer progress are defined and

documented.

2. Participate in project milestones reviews.

3.1.8 039 The project manager shall require the software

developer(s) to periodically report status and

provide insight into software development and

test activities; at a minimum, the software

developer(s) will be required to allow the project

manager and software assurance personnel to:

a. Monitor product integration.

b. Review the verification activities to ensure

adequacy.

c. Review trade studies and source data.

d. Audit the software development processes and

practices.

e. Participate in software reviews and technical

interchange meetings.

1. Confirm that software developer(s) are periodically

reporting status and providing insight to the project

manager.

2. Monitor product integration.

3. Analyze the verification activities to ensure

adequacy.

4. Assess trade studies, source data, software reviews,

and technical interchange meetings.

5. Perform audits on software development processes

and practices at least once every two years.

6. Develop and provide status reports.

7. Develop and maintain a list of all software

assurance review discrepancies, risks, issues,

findings, and concerns.

NASA-STD-8739.8A – 2020-06-10

19 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

8. Confirm that the project manager provides

responses to software assurance and software safety

submitted issues, findings, and risks and that the

project manager tracks software assurance and

software safety issues, findings, and risks to closure.

3.1.9 040 The project manager shall require the software

developer(s) to provide NASA with software

products, traceability, software change tracking

information and nonconformances, in electronic

format, including software development and

management metrics.

1. Confirm that software artifacts are available in

electronic format to NASA.

3.1.10 042 The project manager shall require the software

developer(s) to provide NASA with electronic

access to the source code developed for the

project in a modifiable format.

1. Confirm that software developers are providing

NASA with electronic access to the source code

generated for the project in a modifiable form.

3.1.11 139 The project manager shall comply with the

requirements in this NPR that are marked with an

”X” in Appendix C consistent with their software

classification.

1. Assess that the software requirements, products,

procedures, and processes of the project are

compliant with the NPR 7150.2 requirements per the

software classification and safety criticality for

software.

3.1.12 121 Where approved, the project manager shall

document and reflect the tailored requirement in

the plans or procedures controlling the

development, acquisition, and deployment of the

affected software.

1. Confirm that any requirement tailoring in the

Requirements Mapping Matrix has the required

approvals.

2. Develop a tailoring matrix of software assurance

and software safety requirements.

3.1.13 125 Each project manager with software components

shall maintain a requirements mapping matrix or

multiple requirements mapping matrices against

requirements in this NPR, including those

1. Confirm that the project is maintaining a

requirement mapping matrix (matrices) for all

requirements in NPR 7150.2.

NASA-STD-8739.8A – 2020-06-10

20 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

delegated to other parties or accomplished by

contract vehicles or Space Act Agreements.

2. Maintain the requirement mapping matrix

(matrices) for requirements in NASA-STD-8739.8.

3.1.14 027 The project manager shall satisfy the following

conditions when a Commercial-Off-The-Shelf

(COTS), Government Off-The-Shelf (GOTS),

Modified Off-The-Shelf (MOTS), Open Source

Software (OSS), or reused software component is

acquired or used:

a. The requirements to be met by the software

component are identified.

b. The software component includes

documentation to fulfill its intended purpose

(e.g., usage instructions).

c. Proprietary rights, usage rights, ownership,

warranty, licensing rights, and transfer rights

have been addressed.

d. Future support for the software product is

planned and adequate for project needs.

e. The software component is verified and

validated to the same level required to accept a

similar developed software component for its

intended use.

f. The project has a plan to perform periodic

assessments of vendor reported defects to ensure

the defects do not impact the selected software

components.

1. Confirm that the conditions listed in "a" through

"f" are complete for any COTS, GOTS, MOTS, OSS,

or reused software that is acquired or used.

3.2 Software Cost Estimation

NASA-STD-8739.8A – 2020-06-10

21 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.2.1 015 To better estimate the cost of development, the

project manager shall establish, document, and

maintain:

a. Two cost estimate models and associated cost

parameters for all Class A and B software

projects that have an estimated project cost of $2

million or more.

b. One software cost estimate model and

associated cost parameter(s) for all Class A and

Class B software projects that have an estimated

project cost of less than $2 million.

c. One software cost estimate model and

associated cost parameter(s) for all C and D

software projects.

d. One software cost estimate model and

associated cost parameter(s) for all Class F

software projects.

1. Confirm that the required number of software cost

estimates are complete and include software

assurance cost estimate(s) for the project, including a

cost estimate associated with handling safety-critical

software and safety-critical data.

NASA-STD-8739.8A – 2020-06-10

22 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.2.2 151 The project manager’s software cost estimate(s)

shall satisfy the following conditions:

a. Covers the entire software life-cycle.

b. Is based on selected project attributes (e.g.,

assessment of the size, functionality, complexity,

criticality, reuse code, modified code, and risk of

the software processes and products).

c. Is based on the cost implications of the

technology to be used and the required

maturation of that technology.

d. Incorporates risk and uncertainty, including

cybersecurity.

e. Includes the cost of the required software

assurance support.

f. Includes other direct costs.

1. Assess the project's software cost estimate(s) to

determine if the stated criteria listed in "a" through

"f" are satisfied.

3.2.3 174 The project manager shall submit software

planning parameters, including size and effort

estimates, milestones, and characteristics, to the

Center measurement repository at the conclusion

of major milestones.

1. Confirm that all the software planning parameters,

including size and effort estimates, milestones, and

characteristics, are submitted to a Center repository.

2. Confirm that all software assurance and software

safety software estimates and planning parameters

are submitted to an organizational repository.

3.3 Software Schedules

NASA-STD-8739.8A – 2020-06-10

23 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.3.1 016 The project manager shall document and

maintain a software schedule that satisfies the

following conditions:

a. Coordinates with the overall project schedule.

b. Documents the interactions of milestones and

deliverables between software, hardware,

operations, and the rest of the system.

c. Reflects the critical dependencies for software

development activities.

d. Identifies and accounts for dependencies with

other projects and cross-program dependencies.

1. Assess that the software schedule satisfies the

conditions in the requirement.

2. Develop a software assurance schedule, including

software assurance products, audits, reporting, and

reviews.

3.3.2 018 The project manager shall regularly hold reviews

of software schedule activities, metrics, status,

and results with the project stakeholders and

track issues to resolution.

1. Confirm the generation and distribution of periodic

reports on software schedule activities, metrics, and

status, including reports of software assurance and

software safety schedule activities, metrics, and

status.

2. Confirm closure of any project software schedule

issues.

3.3.3 046 The project manager shall require the software

developer(s) to provide a software schedule for

the project's review, and schedule updates as

requested.

1. Confirm the project's schedules are updated.

3.4 Software Training

3.4.1 017 The project manager shall plan, track, and ensure

project specific software training for project

personnel.

1. Confirm that any project-specific software training

has been planned, tracked, and completed for project

personnel, including software assurance and software

safety personnel.

3.5 Software Classification Assessments

NASA-STD-8739.8A – 2020-06-10

24 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.5.1 020 The project manager shall classify each system

and subsystem containing software in accordance

with the highest applicable software classification

definitions for Classes A, B, C, D, E, and F

software in Appendix D.

1. Perform a software classification or concur with

the engineering software classification of software

per the descriptions in NPR 7150.2.

3.5.2 176 The project manager shall maintain records of

each software classification determination, each

software Requirements Mapping Matrix, and the

results of each software independent

classification assessment for the life of the

project.

1. Confirm that records of the software Requirements

Mapping Matrix and each software classification are

maintained and updated for the life of the project.

3.6 Software Assurance and Software Independent

Verification & Validation

3.6.1 022 The project manager shall plan and implement

software assurance per NASA-STD-8739.8.

1. Perform according to the software assurance plan

and the software assurance and software safety

standard requirements in NASA-STD-8739.8.

3.6.2 141 For projects reaching Key Decision Point A, the

program manager shall ensure that software

IV&V is performed on the following categories

of projects:

a. Category 1 projects as defined in NPR 7120.5.

b. Category 2 projects as defined in NPR 7120.5

that have Class A or Class B payload risk

classification per NPR 8705.4.

c. Projects selected explicitly by the NASA Chief

of the Office of Safety and Mission Assurance to

have software IV&V.

1. Confirm that IV&V requirements (section 4.4) are

complete on projects that are required to have IV&V.

3.6.3 131 If software IV&V is performed on a project, the

project manager shall ensure an IPEP is

1. Confirm that the IV&V Program Execution Plan

(IPEP) exists.

NASA-STD-8739.8A – 2020-06-10

25 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

developed, negotiated, approved, maintained, and

executed.

3.6.4 178 If software IV&V is performed on a project, the

project manager shall ensure that IV&V is

provided access to development artifacts,

products, source code, and data required to

perform the IV&V analysis efficiently and

effectively.

1. Confirm that IV&V has access to the software

development artifacts, products, source code, and

data required to perform the IV&V analysis

efficiently and effectively.

3.6.5 179 If software IV&V is performed on a project, the

project manager shall provide responses to IV&V

submitted issues and risks, and track these issues

and risks to closure.

1. Confirm that the project manager provides

responses to IV&V submitted issues, findings, and

risks and that the project manager tracks IV&V

issues, findings, and risks to closure.

3.7 Safety-critical Software

3.7.1 205 The project manager, in conjunction with the

SMA organization, shall determine if each

software component is considered to be safety-

critical per the criteria defined in NASA-STD-

8739.8.

1. Confirm that the hazard reports or safety data

packages contain all known software contributions or

events where software; either by its action, inaction

or incorrect action, lead to a hazard.

2. Assess that the hazard reports identify the software

components associated with the system hazards per

the criteria defined in NASA-STD- 8739.8, Appendix

A.

3. Assess that hazard analyses (including hazard

reports) identify the software components associated

with the system hazards per the criteria defined in

NASA-STD- 8739.8, Appendix A.

4. Confirm that the traceability between software

requirements and hazards with software contributions

exist.

5. Develop and maintain a software safety analysis

throughout the software development life-cycle.

NASA-STD-8739.8A – 2020-06-10

26 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.7.2 023 If a project has safety-critical software, the

project manager shall implement the safety-

critical software requirements contained in

NASA-STD-8739.8.

1. Confirm that the identified safety-critical software

components and data have implemented the safety-

critical software assurance requirements listed in this

standard.

3.7.3 134 If a project has safety-critical software or

mission-critical software, the project manager

shall implement the following items in the

software:

a. The software is initialized, at first start and

restarts, to a known safe state.

b. The software safely transitions between all

predefined known states.

c. Termination performed by software of

functions is performed to a known safe state.

d. Operator overrides of software functions

require at least two independent actions by an

operator.

e. Software rejects commands received out of

sequence when execution of those commands out

of sequence can cause a hazard.

f. The software detects inadvertent memory

modification and recovers to a known safe state.

g. The software performs integrity checks on

inputs and outputs to/from the software system.

h. The software performs prerequisite checks

prior to the execution of safety-critical software

commands.

i. No single software event or action is allowed to

initiate an identified hazard.

j. The software responds to an off-nominal

1. Analyze the software requirements and the

software design and work with the project to

implement NPR 7150.2 requirement items "a"

through "l."

2. Assess that the source code satisfies the conditions

in the NPR 7150.2 requirement "a" through "l" for

safety-critical and mission-critical software at each

code inspection, test review, safety review, and

project review milestone.

3. Confirm 100% code test coverage is addressed for

all identified software safety-critical software

components or assure that software developers

provide a risk assessment explaining why the test

coverage is not possible for the safety-critical code

component.

4. Confirm that all identified safety-critical software

components have a cyclomatic complexity value of

15 or lower. If not, assure that software developers

provide a risk assessment explaining why the

cyclomatic complexity value needs to be higher than

15 and why the software component cannot be

structured to be lower than 15.

5. Confirm that the values of the safety-critical

loaded data, uplinked data, rules, and scripts that

affect hazardous system behavior have been tested.

6. Analyze the software design to ensure:

NASA-STD-8739.8A – 2020-06-10

27 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

condition within the time needed to prevent a

hazardous event.

k. The software provides error handling.

l. The software can place the system into a safe

state.

a. Use of partitioning or isolation methods in the

design and code,

b. That the design logically isolates the safety-critical

design elements and data from those that are non-

safety-critical.

7. Participate in software reviews affecting safety-

critical software products.

3.8 Automatic Generation of Software Source Code

3.8.1 146 The project manager shall define the approach to

the automatic generation of the software source

code, including:

a. Validation and verification of auto-generation

tools.

b. Configuration management of the auto-

generation tools and associated data.

c. Description of the limits and the allowable

scope for the use of the auto-generated software.

d. Verification and validation of auto-generated

source code using the same software standards

and processes as hand-generated code.

e. Monitoring the actual use of auto-generated

source code compared to the planned use.

f. Policies and procedures for making manual

changes to auto-generated source code.

g. Configuration management of the input to the

auto-generation tool, the output of the auto-

generation tool, and modifications made to the

output of the auto-generation tools.

1. Assess that the approach for the auto-generation

software source code is defined, and the approach

satisfies at least the conditions “a” through “g.”

NASA-STD-8739.8A – 2020-06-10

28 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.8.2 206 The project manager shall require the software

developers and suppliers to provide NASA with

electronic access to the models, simulations, and

associated data used as inputs for auto-generation

of software.

1. Confirm that NASA, engineering, project, software

assurance, and IV&V have electronic access to the

models, simulations, and associated data used as

inputs for auto-generation of software.

3.9 Software Development Processes and Practices

3.9.3 032 The project manager shall acquire, develop, and

maintain software from an organization with a

non-expired CMMI-DEV rating as measured by a

CMMI Institute Certified Lead Appraiser as

follows:

a. For Class A software: CMMI-DEV Maturity,

Level 3 Rating, or higher for software.

b. For Class B software (except Class B software

on NASA Class D payloads, as defined in NPR

8705.4): CMMI-DEV Maturity Level 2 Rating or

higher for software.

1. Confirm that Class A and B software that is

acquired, developed, and maintained by NASA is

performed by an organization with a non-expired

CMMI-DEV rating, as per the NPR 7150.2

requirement.

2. Assess potential process-related issues, findings, or

risks identified from the CMMI assessment findings.

3. Perform audits on the software development and

software assurances processes.

3.10 Software Reuse

3.10.1 147 The project manager shall specify reusability

requirements that apply to its software

development activities to enable future reuse of

the software, including the models, simulations,

and associated data used as inputs for auto-

generation of software, for United States

Government purposes.

1. Confirm that the project has considered reusability

for its software development activities.

NASA-STD-8739.8A – 2020-06-10

29 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.10.2 148 The project manager shall evaluate software for

potential reuse by other projects across NASA

and contribute reuse candidates to the NASA

Internal Sharing and Reuse Software systems,

however, if the project manager is a contractor

then a civil servant must pre-approve all such

software contributions; all software contributions

should include, at a minimum, the following

information:

a. Software Title.

b. Software Description.

c. The Civil Servant Software Technical Point of

Contact for the software product.

d. The language or languages used to develop the

software.

e. Any third party code contained therein, and the

record of the requisite license or permission

received from the third party permitting the

Government’s use, if applicable.

1. Confirm that any project software contributed as a

reuse candidate has the identified information in

items “a” through “e.”

3.11 Software Cybersecurity

3.11.2 156 The project manager shall perform a software

cybersecurity assessment on the software

components per the Agency security policies and

the project requirements, including risks posed by

the use of COTS, GOTS, MOTS, OSS, or reused

software components.

1. Confirm the project has performed a software

cybersecurity assessment on the software components

per the Agency security policies and the project

requirements, including risks posed by the use of

COTS, GOTS, MOTS, OSS, or reused software

components.

NASA-STD-8739.8A – 2020-06-10

30 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.11.3 154 The project manager shall identify cybersecurity

risks, along with their mitigations, in flight and

ground software systems, and plan the

mitigations for these systems.

1. Confirm that cybersecurity risks, along with their

mitigations, are identified and managed.

3.11.4 157 The project manager shall implement protections

for software systems with communications

capabilities against unauthorized access.

1. For software products with communications

capabilities, confirm that the software requirements

and software design documentation addresses

unauthorized access.

3.11.5 158 The project manager shall ensure that space flight

software systems are assessed for possible

cybersecurity vulnerabilities and weaknesses.

1. Confirm that space or flight software systems have

been assessed for potential cybersecurity

vulnerabilities and weaknesses.

2. Perform static code analysis on the software or

analyze the project's static code analysis tool results

for cybersecurity vulnerabilities and weaknesses.

3.11.6 155 The project manager shall address identified

cybersecurity vulnerabilities and weaknesses.

1. Confirm that the project addresses the engineering

and assurance identified cybersecurity vulnerabilities

and weaknesses.

3.11.7 159 The project manager shall test the software and

record test results for the required software

cybersecurity mitigation implementations

identified from the security vulnerabilities and

security weaknesses analysis.

1. Confirm that testing is complete for the

cybersecurity mitigation.

2. Assess the quality of the cybersecurity mitigation

implementation testing and the test results.

3.11.8 207 The project manager shall identify, record, and

implement secure coding practices.

1. Assess that the software coding guidelines (e.g.,

coding standards) includes secure coding practices.

3.11.9 185 The project manager shall verify that the software

code meets the project’s secure coding standard

by using the results from static analysis tool(s).

1. Analyze the engineering data or perform

independent static code analysis to verify that the

code meets the project’s secure coding standard

requirements.

3.12 Software Bi-Directional Traceability

NASA-STD-8739.8A – 2020-06-10

31 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3.12.1 052 The project manager shall perform, record, and

maintain bi-directional traceability between the

following software elements:

Bi-directional Traceability Class A,

B, and C

Class D

Higher-level requirements to the

software requirements

X

Software requirements to the

system hazards

X X

Software requirements to the

software design components

X

Software design components to the

software code

X

Software requirements to the

software test procedures

X X

Software requirements to the

software non-conformances

X X

1. Confirm that bi-directional traceability has been

completed, recorded, and maintained.

2. Confirm that the software traceability includes

traceability to any hazard that includes software.

4 Software Engineering (Life-Cycle) Requirements

NASA-STD-8739.8A – 2020-06-10

32 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

4.1 Software Requirements

4.1.2 050 The project manager shall establish, capture,

record, approve, and maintain software

requirements, including requirements for COTS,

GOTS, MOTS, OSS, or reused software

components, as part of the technical specification.

1. Confirm that all software requirements are

established, captured, and documented as part of the

technical specification, including requirements for

COTS, GOTS, MOTS, OSS, or reused software

components.

4.1.3 051 The project manager shall perform software

requirements analysis based on flowed-down and

derived requirements from the top-level systems

engineering requirements, safety and reliability

analyses, and the hardware specifications and

design.

1. Perform a software assurance analysis on the

detailed software requirements to analyze the

software requirement sources and identify any

incorrect, missing, or incomplete requirements.

4.1.4 184 The project manager shall include software

related safety constraints, controls, mitigations,

and assumptions between the hardware, operator,

and software in the software requirements

documentation.

1. Analyze that the software requirements

documentation contains the software related safety

constraints, controls, mitigations, and assumptions

between the hardware, operator, and the software.

4.1.5 053 The project manager shall track and manage

changes to the software requirements.

1. Confirm the software requirements changes are

documented, tracked, approved, and maintained

throughout the project life-cycle.

4.1.6 054 The project manager shall identify, initiate

corrective actions, and track until closure

inconsistencies among requirements, project

plans, and software products.

1. Monitor identified differences among

requirements, project plans, and software products to

confirm they are addressed.

4.1.7 055 The project manager shall perform requirements

validation to ensure that the software will

perform as intended in the customer environment.

1. Confirm that the project software testing has

shown that software will function as expected in the

customer environment.

4.2 Software Architecture

NASA-STD-8739.8A – 2020-06-10

33 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

4.2.3 057 The project manager shall transform the

requirements for the software into a recorded

software architecture.

1. Assess that the software architecture addresses or

contains the software structure, qualities, interfaces,

and external/internal components.

2. Analyze the software architecture to assess

whether software safety and mission assurance

requirements are met.

4.2.4 143 The project manager shall perform a software

architecture review on the following categories of

projects:

a. Category 1 Projects as defined in NPR 7120.5.

b. Category 2 Projects as defined in NPR 7120.5

that have Class A or Class B payload risk

classification per NPR 8705.4.

1. Assess the results of or participate in software

architecture review activities held by the project.

4.3 Software Design

4.3.2 058 The project manager shall develop, record, and

maintain a software design based on the software

architectural design that describes the lower-level

units so that they can be coded, compiled, and

tested.

1. Assess the software design against the hardware

and software requirements, and identify any gaps.

2. Assess the software design to verify that the design

is consistent with the software architectural design

concepts and that the software design describes the

lower-level units to be coded, compiled, and tested.

3. Assess that the design does not introduce

undesirable behaviors or unnecessary capabilities.

4. Confirm that the software design implements all of

the required safety-critical functions and

requirements.

5. Perform a software assurance design analysis.

4.4 Software Implementation

NASA-STD-8739.8A – 2020-06-10

34 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

4.4.2 060 The project manager shall implement the

software design into software code.

1. Confirm that the software code implements the

software designs.

2. Confirm that the code does not contain

functionality not defined in the design or

requirements.

4.4.3 061 The project manager shall select and adhere to

software coding methods, standards, and criteria.

1. Analyze that the software code conforms to all of

the required software coding methods, rules, and

principles.

4.4.4 135 The project manager shall use static analysis

tools to analyze the code during the development

and testing phases to detect defects, software

security, and coding errors.

1. Confirm the static analysis tool(s) are used with

checkers to identify security and coding errors, and

defects.

2. Assess that the project addresses the results from

the static analysis tools used by software assurance,

software safety, engineering, or the project.

3. Confirm that the software code has been scanned

for security defects and confirm the result.

4.4.5 062 The project manager shall unit test the software

code.

1. Confirm that the project successfully executes the

required unit tests, particularly those testing safety-

critical functions.

2. Confirm that the project addresses or otherwise

tracks to closure errors, defects, or problem reports

found during unit test.

4.4.6 186 The project manager shall assure that the unit test

results are repeatable.

1. Confirm that the project maintains the procedures,

scripts, results, and data needed to repeat the unit

testing (e.g., as-run scripts, test procedures, results).

4.4.7 063 The project manager shall provide a software

version description for each software release.

1. Confirm that the project creates a correct software

version description for each software release.

2. For each software release, confirm that the

software has been scanned for security defects and

coding standard compliance and confirm the results.

NASA-STD-8739.8A – 2020-06-10

35 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

4.4.8 136 The project manager shall validate and accredit

the software tool(s) required to develop or

maintain software.

1. Confirm that the software tool(s) needed to create

and maintain software is validated and accredited.

4.5 Software Testing

4.5.2 065a The project manager shall establish and maintain:

a. Software test plan(s).

…

1. Confirm that software test plans have been

established, contain correct content, and are

maintained.

2. Confirm that the software test plan addresses the

verification of safety-critical software, specifically

the off-nominal scenarios.

4.5.2 065b The project manager shall establish and maintain:

...

b. Software test procedure(s).

…

1. Confirm that test procedures have been established

and are updated when changes to tests or

requirements occur.

2. Analyze the software test procedures for:

a. Coverage of the software requirements.

b. Acceptance or pass/fail criteria,

c. The inclusion of operational and off-nominal

conditions, including boundary conditions,

d. Requirements coverage and hazards per SWE-66

and SWE-192, respectively.

4.5.2 065c The project manager shall establish and maintain:

...

c. Software test report(s).

1. Confirm that the project creates and maintains the

test reports throughout software integration and test.

2. Confirm that the project records the test report data

and that the data contains the as-run test data, the test

results, and required approvals.

3. Confirm that the project records all issues and

discrepancies found during each test.

4. Confirm that the project tracks to closure errors,

defects, etc. found during testing.

NASA-STD-8739.8A – 2020-06-10

36 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

4.5.3 066 The project manager shall test the software

against its requirements.

1. Confirm test coverage of the requirements through

the execution of the test procedures.

2. Perform test witnessing for safety-criticality

software.

3. Ensure that any newly identified software

contributions to hazards, events, or conditions found

during testing are in the system safety data package.

4.5.4 187 The project manager shall place software items

under configuration management prior to testing.

1. Confirm that software items to be tested are under

configuration management before the start of testing.

2. Confirm the project maintains the software items

under configuration management through the

completion of testing.

4.5.5 068 The project manager shall evaluate test results

and record the evaluation.

1. Confirm that test results are assessed and recorded.

2. Confirm that the project documents software non-

conformances in a tracking system.

3. Confirm that test results are sufficient verification

artifacts for the hazard reports.

4.5.6 070 The project manager shall use validated and

accredited software models, simulations, and

analysis tools required to perform qualification of

flight software or flight equipment.

1. Confirm the software models, simulations, and

analysis tools used to achieve the qualification of

flight software or flight equipment have been

validated and accredited.

4.5.7 071 The project manager shall update the software

test plan(s) and the software test procedure(s) to

be consistent with software requirements.

1. Analyze that software test plans and software test

procedures cover the software requirements and

provide adequate verification of hazard controls,

specifically the off-nominal scenarios.

4.5.8 073 The project manager shall validate the software

system on the targeted platform or high-fidelity

simulation.

1. Confirm that the project validates the software

components on the targeted platform or a high-

fidelity simulation.

NASA-STD-8739.8A – 2020-06-10

37 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

4.5.9 189 The project manager shall ensure that the code

coverage measurements for the software are

selected, implemented, tracked, recorded, and

reported.

1. Confirm that code coverage measurements have

been selected, performed, tracked, recorded, and

communicated with each release.

4.5.10 190 The project manager shall verify code coverage is

measured by analysis of the results of the

execution of tests.

1. Confirm that the project performs code coverage

analysis using the results of the tests or by use of a

code coverage tool.

2. Analyze the code coverage measurements for

uncovered software code.

3. Assess any uncovered software code for potential

risk, issues, or findings.

4.5.11 191 The project manager shall plan and conduct

software regression testing to demonstrate that

defects have not been introduced into previously

integrated or tested software and have not

produced a security vulnerability.

1. Confirm that the project plans regression testing

and that the regression testing is adequate and

includes retesting of all safety-critical code

components.

2. Confirm that the project performs the planned

regression testing.

3. Identify any risks and issues associated with the

regression test set selection and execution.

4. Confirm that the regression test procedures are

updated to incorporate tests that validate the

correction of critical anomalies.

4.5.12 192 The project manager shall verify through test the

software requirements that trace to a hazardous

event, cause, or mitigation technique.

1. Confirm that the project verifies the software

requirements, which trace to a hazardous event,

cause, or mitigation techniques, through testing.

4.5.13 193 The project manager shall develop acceptance

tests for loaded or uplinked data, rules, and code

that affects software and software system

behavior.

1. Confirm that the project develops acceptance tests

for loaded or uplinked data, rules, and code that

affect software and software system behavior.

2. Confirm that the loaded or uplinked data, rules,

scripts, or code that affects software and software

NASA-STD-8739.8A – 2020-06-10

38 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

system behavior is baselined in the software

configuration system.

4.5.14 211 The project manager shall test embedded COTS,

GOTS, MOTS, OSS, or reused software

components to the same level required to accept a

custom developed software component for its

intended use.

1. Confirm that the project is testing COTS, GOTS,

MOTS, OSS, or reused software components to the

same level as developed software for its intended use.

4.6 Software Operations, Maintenance, and

Retirement

4.6.2 075 The project manager shall plan and implement

software operations, maintenance, and retirement

activities.

1. Assess the plans for maintenance, operations, and

retirement for completeness of the required software

engineering and software assurance activities.

2. Confirm that the project implements software

operations, software maintenance, and software

retirement plans.

4.6.3 077 The project manager shall complete and deliver

the software product to the customer with

appropriate records, including as-built records, to

support the operations and maintenance phase of

the software’s life-cycle.

1. Confirm that the correct version of the products is

provided, including as-built documentation and

project records.

2. Perform audits on the configuration management

processes to verify that all products are being

delivered and are the correct versions.

NASA-STD-8739.8A – 2020-06-10

39 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

4.6.4 194 The project manager shall complete, prior to

delivery, verification that all software

requirements identified for this delivery have

been met, that all approved changes have been

implemented and that all defects designated for

resolution prior to delivery have been resolved.

1. Confirm that the project has identified the software

requirements to be met, the approved changes to be

implemented, and defects to be resolved for each

delivery.

2. Confirm that the project has met all software

requirements identified for the delivery.

3. Confirm that approved changes have been

implemented and tested.

4. Confirm that the approved changes to be

implemented and the defects to be resolved have

been resolved.

5. Approve or sign-off on the projects delivered

products.

4.6.5 195 The project manager shall maintain the software

using standards and processes, per the applicable

software classification throughout the

maintenance phase.

1. Perform audits on the standards and processes used

throughout maintenance based on the software

classification.

4.6.6 196 The project manager shall identify the records

and software tools to be archived, the location of

the archive, and procedures for access to the

products for software retirement or disposal.

1. Confirm that the project has identified the records

and software tools for archival.

2. Confirm the project has an archival location and

the procedures for archiving and accessing products

for software retirement or disposal.

3. Confirm that the project archives all software and

records as planned.

5 Supporting Software Life-Cycle Requirements

5.1 Software Configuration Management

NASA-STD-8739.8A – 2020-06-10

40 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

5.1.2 079 The project manager shall develop a software

configuration management plan that describes the

functions, responsibilities, and authority for the

implementation of software configuration

management for the project.

1. Assess that a software configuration management

plan has been developed and complies with the

requirements in NPR 7150.2 and Center/project

guidance.

5.1.3 080 The project manager shall track and evaluate

changes to software products.

1. Analyze proposed software and hardware changes

to software products for impacts, particularly to

safety and security.

2. Confirm:

a. that the project tracks the changes,

b. that the changes are approved and documented

before implementation,

c. that the implementation of changes is complete,

and

d. that the project tests the changes.

3. Confirm software changes follow the software

change control process.

5.1.4 081 The project manager shall identify the software

configuration items (e.g., software records, code,

data, tools, models, scripts) and their versions to

be controlled for the project.

1. Confirm that the project has identified the

configuration items and their versions to be

controlled.

2. Assess that the software safety-critical items are

configuration managed, including hazard reports and

safety analysis.

5.1.5 082 The project manager shall establish and

implement procedures to:

a. Designate the levels of control through which

each identified software configuration item is

required to pass.

b. Identify the persons or groups with authority to

authorize changes.

1. Confirm that software assurance has participation

in software control activities.

2. Perform an audit against the configuration

management procedures to confirm that the project is

following the established procedures.

NASA-STD-8739.8A – 2020-06-10

41 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

c. Identify the persons or groups to make changes

at each level.

5.1.6 083 The project manager shall prepare and maintain

records of the configuration status of software

configuration items.

1. Confirm that the project maintains records of the

configuration status of the configuration items.

5.1.7 084 The project manager shall perform software

configuration audits to determine the correct

version of the software configuration items and

verify that they conform to the records that define

them.

1. Confirm that the project manager performed

software configuration audits to determine the correct

version of the software configuration items and verify

that the results of the audit conform to the records

that define them.

5.1.8 085 The project manager shall establish and

implement procedures for the storage, handling,

delivery, release, and maintenance of deliverable

software products.

1. Confirm that the project establishes procedures for

storage, processing, distribution, release, and support

of deliverable software products.

2. Perform audits on the project to ensure that the

project is following defined procedures for

deliverable software products.

5.1.9 045 The project manager shall participate in any joint

NASA/developer audits.

1. Participate in or assess the results from any joint

NASA/developer audits. Track any findings to

closure.

5.2 Software Risk Management

5.2.1 086 The project manager shall record, analyze, plan,

track, control, and communicate all of the

software risks and mitigation plans.

1. Confirm and assess that a risk management process

includes recording, analyzing, planning, tracking,

controlling, and communicating all of the software

risks and mitigation plans.

2. Perform audits on the risk management process for

the software activities.

5.3 Software Peer Reviews/Inspections

NASA-STD-8739.8A – 2020-06-10

42 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

5.3.2 087 The project manager shall perform and report the

results of software peer reviews or software

inspections for:

a. Software requirements.

b. Software plans.

c. Any design items that the project identified for

software peer review or software inspections

according to the software development plans.

d. Software code as defined in the software and

or project plans.

e. Software test procedures.

1. Confirm that software peer reviews are performed

and reported on for project activities.

2. Confirm that the project addresses the accepted

software peer review findings.

3. Perform peer reviews on software assurance and

software safety plans.

4. Confirm that the source code satisfies the

conditions in the NPR 7150.2 requirement SWE-134,

"a" through "l," based upon the software functionality

for the applicable safety-critical requirements at each

code inspection/review.

5. For code peer reviews, confirm that all identified

software safety-critical components have a

cyclomatic complexity value of 15 or lower or

develop a risk for the software safety-critical

components that have a cyclomatic complexity value

over 15.

5.3.3 088 The project manager shall, for each planned

software peer review or software inspection:

a. Use a checklist or formal reading technique

(e.g., perspective based reading) to evaluate the

work products.

b. Use established readiness and completion

criteria.

c. Track actions identified in the reviews until

they are resolved.

d. Identify the required participants.

1. Confirm that the project meets the NPR 7150.2

criteria in "a" through "d" for each software peer

review.

2. Confirm that the project resolves the actions

identified from the software peer reviews.

3. Perform audits on the peer-review process.

5.3.4 089 The project manager shall, for each planned

software peer review or software inspection,

record necessary measurements.

1. Confirm that the project records the software peer

reviews or software inspection results measurements.

NASA-STD-8739.8A – 2020-06-10

43 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

5.4 Software Measurements

5.4.2 090 The project manager shall establish, record,

maintain, report, and utilize software

management and technical measurements.

1. Confirm that a measurement program establishes,

records, maintains, reports, and uses software

assurance, management, and technical measures.

2. Perform trending and analyses on metrics (quality

metrics, defect metrics) and report.

5.4.3 093 The project manager shall analyze software

measurement data collected using documented

project-specified and Center/organizational

analysis procedures.

1. Confirm software measurement data analysis

conforms to documented analysis procedures.

2. Analyze software assurance measurement data

collected.

5.4.4 094 The project manager shall provide access to the

software measurement data, measurement

analyses, and software development status as

requested to the sponsoring Mission Directorate,

the NASA Chief Engineer, the Center Technical

Authorities and Headquarters SMA.

1. Confirm access to software measurement data,

analysis, and status as requested to the following

entities:

- Sponsoring Mission Directorate

- NASA Chief Engineer

- Center Technical Authorities

- Headquarters SMA

5.4.5 199 The project manager shall monitor measures to

ensure the software will meet or

exceed performance and functionality

requirements, including satisfying constraints.

1. Confirm the project monitors and updates planned

measurements to assure the software will meet or

exceed performance and functionality requirements,

including satisfying constraints.

2. Monitor and track any performance or

functionality requirements that are not being met or

are at risk of not being met.

5.4.6 200 The project manager shall collect, track, and

report software requirements volatility metrics.

1. Confirm that the project collects, tracks, and

reports on the software volatility metrics.

2. Analyze software volatility measures to evaluate

requirements stability as an early indicator of project

problems.

NASA-STD-8739.8A – 2020-06-10

44 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

5.5 Software Non-conformance or Defect

Management

5.5.1 201 The project manager shall track and maintain

software non-conformances (including defects in

tools and appropriate ground software).

1. Confirm that all software non-conformances are

recorded and tracked to resolution.

2. Confirm that accepted non-conformances include

the rationale for the non-conformance.

5.5.2 202 The project manager shall define and implement

clear software severity levels for all software

non-conformances (including tools, COTS,

GOTS, MOTS, OSS, reused software

components, and applicable ground systems).

1. Confirm that all software non-conformances

severity levels are defined.

2. Assess the application and accuracy of the defined

severity levels to software non-conformances.

3. Confirm that the project assigns severity levels to

non-conformances associated with tools, COTS,

GOTS, MOTS, OSS, reused software components,

and applicable ground systems.

4. Maintain or have access to the number of software

nonconformances at each severity level for each

software configuration item.

5.5.3 203 The project manager shall implement mandatory

assessments of reported non-conformances for all

COTS, GOTS, MOTS, OSS, or reused software

components.

1. Confirm the evaluations of reported non-

conformances for all COTS, GOTS, MOTS, OSS, or

reused software components are occurring throughout

the project life-cycle.

2. Assess the impact of non-conformances on the

safety, quality, and reliability of the project software.

5.5.4 204 The project manager shall implement process

assessments for all high severity software non-

conformances (closed loop process).

1. Perform or confirm that a root cause analysis has

been completed on all identified high severity

software nonconformances, the results are recorded,

and that the results have been assessed for adequacy.

2. Confirm that the project analyzed the processes

identified in the root cause analysis associated with

the high severity software non-conformances.

NASA-STD-8739.8A – 2020-06-10

45 of 59

NPR

7150.2

Section

SWE

NPR 7150.2 Requirement Software Assurance and Software Safety Tasks

3. Assess opportunities for process improvement on

the processes identified in the root cause analysis

associated with the high severity software non-

conformances.

4. Perform or confirm tracking of corrective actions

to closure on high severity software non-

conformances.

NASA-STD-8739.8A – 2020-06-10

46 of 59

4.4 Independent Verification &Validation (IV&V)

 The requirements in the IV&V section are applicable to all IV&V efforts performed on a

software development project, as tailored by the IV&V Project Execution Plan. It also serves as

the definition of what NASA considers to be IV&V. IV&V is a risk mitigation activity, and as

such, the application of IV&V analysis and the rigor of that analysis is driven by the IV&V

Provider’s assessment of software risk.

 IV&V Overview

4.4.2.1 IV&V is a technical discipline of software assurance, which employs rigorous

analysis and testing methodologies identifying objective evidence and conclusions to provide a

second independent assessment of critical products and processes throughout the life-cycle. The

secondary evaluation of products and processes throughout the life-cycle contributes to the

demonstration of whether the software is fit for nominal operations (required functionality, safety,

dependability, etc.), and off-nominal conditions (response to faults, responses to hazardous

conditions, etc.). The goal of the IV&V effort is to contribute to the assurance conclusions to the

project and stakeholders based on evidence found in software development artifacts and risks

associated with the intended behaviors of the software.

4.4.2.2 Three parameters define the independence of IV&V: technical independence,

managerial independence, and financial independence.

a. Technical independence requires that the personnel performing the IV&V analysis are not

involved in the development of the system or its elements. The IV&V team establishes an

understanding of the problem and how the system addresses the problem. It is through technical

independence that the IV&V team’s different perspective allows it to detect subtle errors

overlooked by those personnel focused on developing the system.

b. Managerial independence requires that the personnel performing the IV&V analysis are not

in the same organization as the development and program management team. Managerial

independence also means that the IV&V team makes its own decisions as to which segments of the

system and its software to analyze and test, chooses the IV&V analysis methods to apply, and

defines the IV&V schedule of activities. While being independent from the development and

program management organization, the IV&V team does provide its findings, in a timely manner,

to both of those organizations. The submission of findings to the program management

organization should not include any restrictions (e.g., requiring the approval of the development

organization) or any other adverse pressures from the development group.

c. Financial independence requires that the control of the IV&V budget be vested in a group

independent of the software development organization. Financial independence does not

necessarily mean that the IV&V team controls the budget, but that the finances should be

structured so that funding is available for the IV&V team to complete its analysis or test work. No

adverse financial pressure or influence is applied.

NASA-STD-8739.8A – 2020-06-10

47 of 59

4.4.2.3 The IV&V process starts early in the software development life-cycle, providing

feedback to the Provider organization, allowing them to modify products at optimal timeframes

and in a timely fashion, thereby reducing overall project risk. The feedback also answers project

stakeholders’ questions about system properties (correctness, robustness, safety, security, etc.) so

they can make informed decisions with respect to the development and acceptance of the system

and its software.

4.4.2.4 The IV&V Provider performs two primary activities, often concurrently:

verification and validation. Each of the activities provides a different perspective on the

system/software. Verification is the process of evaluating a system and its software to provide

objective evidence as to whether or not a product conforms to the build-to requirements and design

specifications. Verification holds from the requirements through the design and code and into

testing. Verification seeks to demonstrate that the products of a given development phase satisfy

the conditions imposed at the start of or during that phase. Validation tasks, on the other hand, seek

to develop objective evidence that shows that the content of the engineering artifact is the right

content for the developed system/software. The content is accurate and correct if the objective

evidence demonstrates that it satisfies the system requirements (e.g., user needs, stakeholder needs,

etc.), that it fully describes the required capability/functionality needed and that it solves the right

problem.

4.4.2.5 The center of the IV&V effort is on the discovery of objective evidence that

supports the correct operation of the system or refutes the correct operation of the system. To

understand this objective evidence, the IV&V provider typically works with the development

team, which provides artifacts such as concept studies, operations concepts, and requirements that

define the overall project. The IV&V provider uses these materials to develop an independent

understanding of the project’s commitment to NASA, which then forms the basis for validation of

lower-level technical artifacts.

4.4.2.6 Two principles help guide the development and use of objective evidence.

a. Performing IV&V throughout the entire development lifetime is the first principle;

potential problems should be detected as early as possible in the development life-cycle.

Performing IV&V throughout the entire development lifetime provides the IV&V team with

sufficient information with which to establish a basis for the results of the analysis and provides

early objective evidence to the development and program management groups to help keep the

development effort on track early in the life-cycle.

b. The second principle is “appropriate assurance.” Given that it is not possible to provide

IV&V on all aspects of a project’s software, the IV&V provider and project should balance risks

against available resources to define an IV&V program for each project that will provide IV&V so

that the software will operate correctly, safely, reliably, and securely throughout its operational

lifetime. The IV&V Project Execution Plan will document this tailored approach and summarize

the cost/benefit trade-offs made in the scoping process.

4.4.2.7 The requirements in the IV&V section are analyzed and partitioned according to the

type of artifact. The requirements do not imply or require the use of any specific life-cycle model.

It is also important to understand that IV&V applies to any life-cycle development process. The

NASA-STD-8739.8A – 2020-06-10

48 of 59

requirements in the IV&V section document the potential scope of analysis performed by the

IV&V Provider and the key responsibility of the software project to provide the information

needed to perform that analysis. Additionally, scoping the IV&V analysis is according to the

application of the risk assessment to determine the prioritization of tasks and the level of rigor

associated with performing those tasks. The scoping exercise results are captured in the IV&V

Project Execution Plan, as documented below.

 IV&V Planning/Management/Program Execution.

4.4.3.1 The IV&V Provider shall: (SASS-02)

a. Conduct an initial planning and risk assessment effort to determine the specific

system/software behaviors (including the software components responsible for implementing the

behaviors) to be analyzed, the IV&V tasks to be performed, the rigor to be applied to the tasks, and

any tailoring of the requirements in this standard to be applied to the IV&V effort.

Note: IV&V is a focused activity that prioritizes IV&V analysis to address the highest

developmental and operational software risks. IV&V priority is based on the combination of

the potential for software impacts to safety and mission success and the probability factors for

latent defects. IV&V analysis tasks provide coverage with a degree of rigor that reflects the

priority level. The initial planning and scoping effort based on the risk assessment define the

starting point for the IV&V analysis. The planning and scoping effort also aid in establishing

the initial relationships between the IV&V Provider, the Acquirer, and the Provider.

b. Develop and negotiate with the project an IV&V Execution Plan documenting the

activities, methods, level of rigor, environments, tailoring (if any) of these requirements, and

criteria to be used in performing verification and validation of in-scope system/software behaviors

(including responsible software components) determined by the planning and scoping effort.

Note: A provider should use a documented analysis approach to track and manage the IV&V

effort in alignment with on-going development project efforts. The IV&V Project Execution

Plan documents which software products will be subject to which analyses, and which analysis

requirements will be fully, partially, or not applied following the risk assessment and resource

constraints. The IV&V plan also serves as a communication tool between the project and

IV&V to set expectations for the IV&V products produced throughout the life-cycle.

c. Provide analysis results, risks, and assurance statements/data to all the responsible

organizations’ project management, engineering, and assurance personnel.

Note: While independent, the IV&V Provider is still a part of the overall safety and risk

mitigation software assurance strategy for a project. The results of IV&V analysis need to be

incorporated into the overall software assurance assessment of the project as well as provided

to the project management.

d. Participate in project reviews of software activities by providing status and results of

software IV&V activities including, but not limited to, upcoming analysis tasks, artifacts needed

from the project, the results of the current or completed analysis, defects, and risks to stakeholders,

customers, and development project personnel.

NASA-STD-8739.8A – 2020-06-10

49 of 59

Note: The most significant positive impact of IV&V analysis is when the analysis results are in

phase with the development effort. Communicating defects after development artifacts are

baselined increases the cost to make the changes. Additionally, the inclusion of the IV&V

Provider in ongoing technical meetings keeps the IV&V Provider informed of possible changes

that may affect future IV&V tasking. Supporting the ongoing technical meetings allows the

IV&V Provider an opportunity to provide real-time feedback on these changes.

e. Participate in planned software peer reviews or software inspections and record peer review

measurements guided by the planning and scoping risk analysis documented in the IV&V Project

Execution Plan as well as by the content of the items being reviewed or inspected.

Note: The IV&V Provider should be involved in the review/inspection process for all

system/software items within the scope of their analysis.

f. Establish, record, maintain, report, and utilize software management and technical

measurements.

g. Assess and track the actual results and performance of software activities against the

software plans and identify and report any risks or findings.

h. Track and evaluate changes to software products to evaluate for possible changes in the

IV&V Provider’s risk analysis as well as for potential adverse impacts to the software system and

the development effort.

i. Assess the software development lifecycle for suitability for the problem to be solved, and

identify and communicate any risks associated with the chosen life cycle.

j. Identify, analyze, track, communicate, and record risks to the software and development

project in accordance with NPR 8000.4, Agency Risk Management Procedural Requirements.

k. Track, record, and communicate defects/issues and other results found during the execution

of IV&V analysis during the software development effort to include issues and results found

during the conducting of independent IV&V testing.

4.4.3.2 IV&V Work during Concept Development. The IV&V Provider shall verify and

validate that the concept documentation represents the delineation of a specific implementation

solution to solve the Acquirer’s problem. (SASS-03)

Note: The objective of Concept IV&V is to understand the selected solution and to validate the

role of software as it relates to providing the capability(ies) that support high priority or high-

risk system capability(ies).

a. Ensure that software planned for reuse meets the fit, form, and function as a component

within the new application.

b. Ensure that the system architecture contains the computing-related items (subsystems,

components, etc.) to carry out the mission of the system and satisfy user needs and operational

scenarios or use cases.

NASA-STD-8739.8A – 2020-06-10

50 of 59

c. Ensure that a basis for the engineering and planning of computing-related functions is the

operations, mission objectives (including mission retirement), and the system.

d. Ensure that feasibility and trade studies provide the results to confidently support the

critical decisions that drove the need for the study.

e. Identify and document the known software-based hazard causes, hazard contributors, and

hazard controls.

f. Identify and document software-based security threats and risks, and the project

implements the relevant regulatory requirements.

4.4.3.3 IV&V Work during Requirements Development. The IV&V Provider shall verify

and validate: (SASS-04)

a. That the project implements the requirements for software listed in NPR 7150.2 (SWE-

134), and risk-driven assessments determine the types of IV&V analyses.

b. That the in-scope software requirements and system requirements are, at a minimum,

correct, consistent, complete, accurate, readable, traceable, and testable.

Note: Software usually provides the interface between the user and the system hardware as

well as the interface between system hardware components and other systems. These interfaces

are critical to the successful operation and use of the system.

c. That the project-identified mitigations for identified security risks are in the software

requirements.

Note: Security is an essential aspect of any system development effort. In most systems,

software provides the primary user interface. The user interface is an element of the system

that can provide undesired access. A system concept design should address known security

risks through various features in the system.

d. That the project-identified mitigations for identified security risks are correct and testable.

4.4.3.4 IV&V Work during Design. The IV&V Provider shall verify and validate: (SASS-

05)

a. That the relationship between the in-scope system/software requirements and the associated

architectural elements is traceable correct, consistent, and complete.

Note: Architectural elements are responsible for implementing specific behaviors within the

software and the overall system. It is the interactions between these architectural elements that

result in the realization of the desired behaviors as well as possible undesired behaviors.

b. That the software architecture meets the user’s safety and mission-critical needs as defined

in the requirements.

NASA-STD-8739.8A – 2020-06-10

51 of 59

Note: The architecture provides the foundation for the development of the software. It also

significantly impacts how the software deals with faults and failures, as well as how the

software interfaces with the user and system components. Analysis of the architecture provides

early insight into how the software is structured and how that structure can implement the

requirements.

c. That the detailed design products are traceable, consistent, complete, accurate, and testable.

Note: Detailed design is the implementation of the algorithms that will control and monitor the

different parts of the system as well as allow for interaction between the system and the user

and other systems. The detailed design defines how the architectural components will behave

to support the interactions defined in the architecture. Analysis of the detailed design includes

looking at the low-level software components in the software system.

d. That the interfaces between the detailed design components and the hardware, users,

operators, other software, and external systems are correct, consistent, complete, accurate, and

testable.

Note: While the architecture defines the interactions between the architectural elements, each

element is generally composed of lower-level components defined by the detailed design. The

interfaces between these components are important in ensuring that the architectural element

meets its assigned responsibilities.

e. That the relationship between the software requirements and the associated detailed design

components is correct, consistent, and complete.

Note: The detailed design components capture the approach to implementing the software

requirements, including the requirements associated with fault management, security, and

safety. Analysis of the relationship between the detailed design and the software requirements

provides evidence that all of the requirements are in the detailed design.

4.4.3.5 IV&V Work during Implementation. The IV&V Provider shall verify and validate:

(SASS-06)

a. That the software code products are consistent with architecture, complete with respect to

requirements, and testable.

b. That the software code meets the project software coding standard.

c. That the security risks in the software code are identified and mitigated.

d. Analysis to assess the source code for the presence of open-source software including

ensuring that the project has identified all open-source software used, the use of the open-source

software is consistent with any licensing requirements and that the security risks are identified and

mitigated by the use of the open-source software.

e. That software problem reports generated by the IV&V provider have been addressed

entirely by the project.

NASA-STD-8739.8A – 2020-06-10

52 of 59

f. That the project assesses the software systems for possible security vulnerabilities and

weaknesses.

g. That the project implements the required software security risk mitigations to ensure that

security objectives for software are satisfied.

h. The source code through the use of analysis tools (including but not limited to static,

dynamic, and formal analysis tools).

Note: The use of analysis tools may include the verification and validation of the results of the

analysis tools used by the development project in the process of developing the software.

i. That the relationship between the software design elements and the associated software

units is correct, consistent, and complete.

j. That the relationship between software code components and corresponding requirements

is correct, complete, and consistent.

Note: For all of the implementation requirements, it is with code that the development of

software reaches its lowest level of abstraction and that the software capabilities are

implemented. Evaluating the relationship between the source code and the design components

and requirements provides evidence that only the specified requirements and components are

in the system. Evaluating the relationship between the source code and the design components

and requirements helps to minimize one aspect of the emergence of unexpected behaviors:

inclusion of behaviors not specified in the requirements. The overall analysis of the code is

essential in assuring that the code does implement the required software behaviors. From a

safety perspective, it is important to evaluate the code and assure that known software safety

and security issues such as buffer overflows and type mismatches, among many others, are not

used in safety-critical aspects of the software.

4.4.3.6 IV&V Work during Testing. The IV&V Provider shall: (SASS-07)

a. Verify and validate that test plans, test procedures, test cases, test environment (including

simulations), and test design at all levels of testing (unit, integration, system, acceptance, etc.) are

correct, complete, and consistent for verification and validation of the source code and system

functions allocated to the software.

b. Verify and validate that the relationships between the test plans, test procedures, test cases,

and test design and source code and system functions allocated to the software are correct,

complete, and consistent.

c. Verify that the test plans, test cases, test design, and test procedures contain objective

acceptance criteria that support the verification of the associated requirements for both nominal

and off-nominal conditions.

d. Verify that the software test results meet the associated acceptance criteria to ensure that

software correctly implements the associated requirements.

NASA-STD-8739.8A – 2020-06-10

53 of 59

Note: The IV&V Provider assesses the testing artifacts within the context of the system’s

meaning concerning the desired capabilities and expected operational system environment.

The assessment includes an examination of testing at system boundary conditions to include

unexpected conditions. The testing analysis assures that the project tests all of the

requirements and that the system does what the requirements state it should do. The testing

analysis also includes analysis of the traceability information between the tests and the

requirements.

e. Verify that the project tests the required software security risk mitigations to ensure that the

security objectives for the software are satisfied.

4.4.3.7 IV&V Work during Operations/Maintenance. The IV&V Provider shall assess the

software maintenance plan concerning software elements to support the planning of IV&V

activities during the maintenance phase. (SASS-08)

Note 1: The approach to software development on some projects results in different parts of

the software going into operation at different times in the overall project life-cycle. For

example, a lander mission to Mars may complete the software needed for the cruise phase to

Mars while continuing to work on the entry, descent, landing, and surface operations software.

Some software may also have an extended lifetime such that operational updates are anytime

during the operational use of the software.

Note 2: In some cases, software anomalies will cause changes to the software. The use of

IV&V is important in that changes to software can often have ripple effects throughout the

system as well as cause emergent behaviors. The IV&V analysis provides insight into these

possible effects as well as providing an overall assessment of the impact of the change.

4.5 Principles Related to Tailoring the Standard Requirements

 Software requirements tailoring is the process used to seek relief from standard

requirements consistent with program or project objectives, acceptable risk, and constraints. To

accommodate the wide variety of software systems and subsystems, application of these

requirements to specific software assurance, software safety, and IV&V efforts may be tailored

where justified and approved. NASA established the TA governance model to approve and

mitigate any changes to the application of the requirements in the Software Assurance and

Software Safety Standard. Tailoring from requirements in the Software Assurance and Software

Safety Standard is governed by the following requirements. Tailoring at the Center level is to be

decided by the SMA TA and the NPR 7150.2 requirements mapping matrix applicability. Tailor

the software assurance, software safety, and IV&V requirements using the following levels:

a. The first level of tailoring is the Software Classification Decision, see NPR 7150.2.

b. The second level of tailoring is the tailoring in the project’s Software Requirements

Mapping Matrix, see NPR 7150.2.

NASA-STD-8739.8A – 2020-06-10

54 of 59

c. The third level of tailoring is the tailoring by the Software Assurance TA of the Software

Assurance and Software Safety Standard requirements that correspond to the project’s Software

Requirements Mapping Matrix requirements.

 The Software Assurance and Software Safety Standard establishes a baseline set of

requirements for software assurance, software safety, and IV&V to reduce risks on NASA projects

and programs. Each project has unique circumstances, and tailoring can be employed to modify the

requirements set for software assurance, software safety, and IV&V effort. Determining the

tailoring of requirements is a joint software engineering effort and SMA effort, including

acceptable technical and programmatic risk posture, Agency priorities, size, and complexity.

Requirements can be tailored more broadly across a group of similar projects, a program, an

organization, or other collection of similar software development efforts.

 Per SWE-121, the software assurance organization maintains a requirements mapping

matrix or multiple requirements mapping matrices against requirements in the Software Assurance

and Software Safety Standard, including those delegated to other parties or accomplished by

contract vehicles. Per SWE-013 and SWE-039, the software assurance organization conducts risk

assessment efforts to determine the software assurance, software safety, and IV&V tasks to be

performed, and the rigor of each task. The software assurance organization will develop, maintain,

and execute plans and procedures that cover the entire software life-cycle and, as a minimum,

address the requirements of the Software Assurance and Software Safety Standard with approved

tailoring.

 The approval of the Software Assurance and Software Safety Standard tailoring is

determined by the SMA management at the Center Level in conjunction with the project. The

request for relief from a requirement includes the rationale, a risk evaluation, and reference to all

material that justifies supporting acceptance. The organization submitting the tailoring request

informs the next higher level of involved management of the tailoring request in a timely manner.

The dispositioning organization reviews the request with the other organizations that could be

impacted or have a potential risk (i.e., to safety, quality, cybersecurity, health) with the proposed

changes; and obtains the concurrence of those organizations.

 The Center SMA TA shall review and agree with any tailored Software Assurance and

Software Safety Standard requirements. (SASS-09)

 If a system or subsystem development evolves to meet a higher or lower software

classification as defined in NPR 7150.2 then the software assurance, software safety, and IV&V

organizations shall update their plan(s) to fulfill the applicable requirements per the Requirements

Mapping Matrix and any approved changes, and initiate adjustments to applicable contracts to

meet the modified requirements. (SASS-10)

 The responsibilities for approving changes to the software engineering requirements are

in the NPR 7150.2. When the requirement and software class are applicable, the projects will

record the risk and rationale for any requirement that is not completely implemented by the

project. The projects can document their related mitigations and risk acceptance in the approved

Requirements Mapping Matrix.

NASA-STD-8739.8A – 2020-06-10

55 of 59

 GUIDELINES FOR THE HAZARD DEVELOPMENT

INVOLVING SOFTWARE

A.1 Software Contributions to Hazards

A.1.1 Hazard Analysis should consider software’s ability, by design, to cause or control a given

hazard. It is a best practice to include the software within the system hazard analysis. The general

hazard analysis should consider software common-mode failures that can occur in instances of

redundant flight computers running the same software.

A.1.2 Software Safety Analysis supplements the system hazard analysis by assessing the

software performing critical functions serving as a hazard cause or control. The review assures

compliance with the levied functional software requirements, including SWE-134. The software

should not violate the independence of hazard inhibits, and the software should not violate the

independence of hardware redundancy. The Software Safety Analysis should follow the phased

hazard analysis process. A typical Software Safety Analysis process begins by identifying the must

work and must not work functions in Phase 1 hazard reports. The system hazard analysis and

software safety analysis process should assess each function, between Phase 1 and 2 hazard

analysis, for compliance with the levied functional software requirements, including SWE-134.

For example, Solar Array deployment (must work function) software should place deployment

effectors in the powered off state when it boots up and requires arm and fire commands in the

correct order within 4 CPU cycles before removing a deployment inhibit. The analysis also

assesses the channelization of the communication paths between the inputs/sensors and the

effectors to assure there is no violation of fault tolerance by routing a redundant communication

path through a single component. The system hazard analysis and software safety analysis also

assures the redundancy management performed by the software supports fault tolerance

requirements. For example, software can’t trigger a critical sequence in a single fault-tolerant

manner using a single sensor input. Considering how software can trigger a critical sequence is

required for the design of triggering events such as payload separation, tripping FDIR responses

that turn off critical subsystems, failover to redundant components, and providing closed-loop

control of critical functions such as propellant tank pressurization.

A.1.3 The design analysis portion of software safety analysis should be completed by Phase 2

safety reviews. At this point, the software safety analysis supports a requirements gap analysis to

identify any gaps (SWE-184) and ensuring the risk and control strategy documented in hazard

reports are correct, as stated. Between Phase 2 and 3 safety reviews, the system hazard analysis

and software safety analysis supports the analysis of test plans to assure adequate off-nominal

scenarios (SWE-62, SWE-65a). Finally, in Phase 3, the system hazards analysis should verify the

final implementation and verification upholds the analysis by ensuring test results permit closure

of hazard verifications (SWE-68) and that the final hazardous commands support the single

command and multi-step command needs and finalized pre-requisite checks are in place.

A.1.4 The following section includes useful considerations and examples of software causes

and controls:

a. Does software control any of the safety-critical hardware?

NASA-STD-8739.8A – 2020-06-10

56 of 59

b. Does software perform critical reconfiguration of the system during the mission?

c. Does the software perform redundancy management for safety-critical hardware?

d. Does the software determine when to perform a critical action?

e. Does the software trigger logic to meet failure tolerance requirements?

f. Does the software monitor hazard inhibits, safety-critical hardware/software, or issue a

caution and warning alarm used to perform an operational control?

g. Does the software process or display data used to make safety-critical decisions?

h. Does the flight or ground software manipulate hazardous system effectors during prelaunch

checkouts or terminal count?

i. Does the software perform analysis that impacts automatic or manual hazardous

operations?

j. Does the software serve as an interlock preventing unsafe actions?

k. Does the software contain stored command sequences that remove multiple inhibits from a

hazard?

l. Does the software initiate any stored command sequences, associated with a safety-critical

activity?

m. Does software violate any hazard inhibits or hardware redundancy independence

(channelized communication/power paths, stored command sequences/scripts, FDIR false

positive, etc.)?

n. Can the software controls introduce new hazard causes?

o. Are the software safety-critical controls truly independent?

p. Can common cause faults affect the software controls?

q. Can any of the software controls used in operational scenarios cause a system hazard?

r. Does the software control switch-over to a backup system if a failure occurs in a primary

system?

s. Is the software that makes safety-critical decisions fault-tolerant?

t. Does the software provide an approach for recovery if the system monitoring functions

fail?

u. Does the software allow the operators to disable safety-critical controls unintentionally?

NASA-STD-8739.8A – 2020-06-10

57 of 59

v. Does the software provide safety-critical cautions and warnings?

w. Is the software capable of diagnosing and fixing safety-critical faults that might occur in

operations?

x. Does the software provide health and status of safety-critical functions?

y. Does the software process safety-critical commands (including autonomous commanding)?

z. Can software that provides full or partial verification or validation of safety-critical systems

generate a hazard if it has a defect, fault, or error?

aa. Can a defect, fault, or error in the software used to process data or analyze trends lead to

safety decisions that cause a system hazard?

bb. Do software capabilities exist against the potential use cases and planned operations

throughout all phases of use, and through transitions between those phases/states?

A.1.5 Additional considerations when identifying software causes in a general software-centric

hazard analysis are found in Table 2 below.

Table 2. Additional considerations when identifying software causes in hazard analysis

Additional

considerations

Causes Controls

Computer

Reset

1. Reset with no restart

2. Reset during program upload (PROM

corruption)

3. Boot PROM corruption preventing reset

4. Watchdog active during reboot causing

infinite boot loop

1. Disable FDIR and

watchdogs during boot

2. Redundant computers

Memory 1. Memory corruption

2. Out of Memory

3. Buffer overrun

4. Deadlock (trying to write to same

memory at the same time or trying to

update while reading it)

5. Single Event Upset/bit flip

6. Shared Memory (can defeat redundancy

independence)

1. No Dynamic allocation

of memory after

initialization

2. EDAC/Memory

scrubbing

3. Memory margin

CPU 1. Cycle overrun

2. Cycle jitter

3. Stack processing/ordering incorrect

(e.g., FIFO vs. LIFO vs. unknown)

4. One task failing to release shared

resource

5. Single Event Upset

1. CPU utilization and cycle

time margin

2. Self-checking CPU cores

NASA-STD-8739.8A – 2020-06-10

58 of 59

Additional

considerations

Causes Controls

6. Hardware failure

Commanding

1. Inadvertent/Erroneous commanding

2. Failure to command

3. Command out of sequence

4. Command corrupted or illegitimate

command=

1. Command validation

(cyclic redundancy

check, timestamp,

destination/source)

2. Acknowledgment/

negative

acknowledgment

Communication

and

Input/Output

1. Communication bus overload

2. Lack of or intermittent communication

3. Complex configuration input

4. Babbling Node

1. Communication bus

utilization margin

2. Use of lossless protocol

3. Downstream input voting

4. External safing function

5. Bus Guardian

Display Data

1. Incorrect Data (unit conversion,

incorrect variable type, etc.)

2. Stale Data

1. Visual indication of stale

data

2. Watchdog timer

Events and

Actions

1. Out-of-sequence event protection

2. Multiple events/actions trigger

simultaneously (when not expected)

3. Error/Exception handling missing or

incomplete

4. Inadvertent mode transition

1. Fault Management

2. Pre-requisite logic

3. Interlocks

Timekeeping

1. Time runs fast/slow

2. Time skips (e.g., Global Positioning

System time correction)

3. Time sync across components

4. Oscillator Drift

1. Diverse/redundant time

sources with fault down

logic

2. Robust time sync design

that can deal with the

loss of external time

sources

3. Prelaunch checkout of

Oscillators

Timing

Problems

1. Priority inversion

2. Failure to terminate/complete process in

a given time

3. Data latency/sampling rate too slow

4. Race Conditions

5. Non-determinism

1. Static and Dynamic

Analysis Tools

2. Coding standards

Coding, Logic,

and Algorithm

failures

1. Division by zero

2. Bad data in = bad data out (no parameter

range & boundary checking)

3. Dead code

4. Unused code

5. Non-functional loops

1. Use of industry-accepted

coding standard

2. Use of safe math libraries

NASA-STD-8739.8A – 2020-06-10

59 of 59

Additional

considerations

Causes Controls

6. Endless do loops

7. Incorrect passes (too many or too few or

not at the correct time)

8. Incorrect “if-then” and incorrect “else.”

9. Too many or too few parameters for the

called function

10. Case/type mismatch

11. Precision mismatch

12. Rounding or truncation fault

13. Resource contention (e.g., thrashing: two

or more processes accessing a shared

resource)

14. Bad configuration data/no checks on

external input files and data

15. Inappropriate equation

16. Undefined or non-initialized data

17. Limit ranges

18. Relationship logic for interdependent

limits

19. Overflow or underflow in the calculation

3. Robust software

development, quality,

and safety processes

Input Failures

1. Noise

2. Sensors or actuators stuck at some value

(all zeros, all ones, some other value)

3. A value above or below range

4. Value in range but incorrect

5. Physical units incorrect

6. Inadequate data sampling rate

1. Sensor Health Checks

2. Input Validation, Sanity

Checks

User Interface

Errors

1. Wrong commands are given by the

operator

2. No commands are given by the operator

3. Status and messages not provided for

operations, systems, and inhibits

4. Ambiguous or incorrect messages

5. User display locks up/fails

1. Two-step commands

2. GUI style guide

3. Software interlocks to

prevent human error

Configuration

Management

1. Incorrect version loaded

2. Incorrect configuration values

1. Version CRC check after

software/configuration

load

Security 1. Denial/Interruption of Service

2. Spoofed/Jammed inputs

3. An unauthorized input/access

1. Message filtering to

detect spoofing

2. Ensure software has data

source validation

checking features

